Accelerating gravitational microlensing simulations using the Xeon Phi coprocessor

نویسندگان

  • Bin Chen
  • Ronald Kantowski
  • Xinyu Dai
  • Eddie Baron
  • Paul van der Mark
چکیده

Recently Graphics Processing Units (GPUs) have been used to speed up very CPU-intensive gravitational microlensing simulations. In this work, we use the Xeon Phi coprocessor to accelerate such simulations and compare its performance on a microlensing code with that of NVIDIA’s GPUs. For the selected set of parameters evaluated in our experiment, we find that the speedup by Intel’s Knights Corner coprocessor is comparable to that by NVIDIA’s Fermi family of GPUs with compute capability 2.0, but less significant than GPUs with higher compute capabilities such as the Kepler. However, the very recently released second generation Xeon Phi, Knights Landing, is about 5.8 times faster than the Knights Corner, and about 2.9 times faster than the Kepler GPU used in our simulations. We conclude that the Xeon Phi is a very promising alternative to GPUs for modern high performance microlensing simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating DNA Sequence Analysis using Intel Xeon Phi

Genetic information is increasing exponentially, doubling every 18 months. Analyzing this information within a reasonable amount of time requires parallel computing resources. While considerable research has addressed DNA analysis using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we present an algorithm for large-scale DNA analysis that exploit...

متن کامل

Accelerating Electron Tomography Reconstruction Algorithm ICON Using the Intel Xeon Phi Coprocessor on Tianhe-2 Supercomputer

Electron tomography (ET) is an important method for studying three-dimensional cell ultrastructure. Combining with a subvolume averaging approach, ET provides new possibilities for investigating in situ macromolecular complexes in sub-nanometer resolution. Because of the limited sampling angles, ET reconstruction usually suffers from the ‘missing wedge’ problem. With a validation procedure, Ite...

متن کامل

High Order Seismic Simulations on the Intel Xeon Phi Processor (Knights Landing)

We present a holistic optimization of the ADER-DG finite element software SeisSol targeting the Intel © Xeon Phi TM x200 processor, codenamed Knights Landing (KNL). SeisSol is a multi-physics software package performing earthquake simulations by coupling seismic wave propagation and the rupture process. The code was shown to scale beyond 1.5 million cores and achieved petascale performance when...

متن کامل

PhiTM for DNA Sequence Analysis

Genetic information is increasing exponentially, doubling every 18 months. Analyzing this information within a reasonable amount of time requires parallel computing resources. While considerable research has addressed DNA analysis using GPUs, so far not much attention has been paid to the Intel Xeon Phi coprocessor. In this paper we present an algorithm for large-scale DNA analysis that exploit...

متن کامل

Splotch: porting and optimizing for the Xeon Phi

With the increasing size and complexity of data produced by large scale numerical simulations, it is of primary importance for scientists to be able to exploit all available hardware in heterogenous High Performance Computing environments for increased throughput and efficiency. We focus on the porting and optimization of Splotch, a scalable visualization algorithm, to utilize the Xeon Phi, Int...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1703.09707  شماره 

صفحات  -

تاریخ انتشار 2017